Dometic Eskimo Ice 600 Guía para resolver problemas Pagina 6

  • Descarga
  • Añadir a mis manuales
  • Imprimir
  • Pagina
    / 32
  • Tabla de contenidos
  • SOLUCIÓN DE PROBLEMAS
  • MARCADORES
  • Valorado. / 5. Basado en revisión del cliente
Vista de pagina 5
INTRODUCTION Eskimo Ice Installation & Operation Manual
4 L-3040 ENGLISH
COMPONENTS OF THE ICE MAKER
ICE-MAKING UNIT
The ice-making unit has an R-404A compressor, seawater-cooled condenser, a filter/drier, and an accumulator. The auger
assembly contains the evaporator barrel, auger rotor, gearbox, motor, water reservoir, and expansion device.
The freshwater delivered to it is converted to ice which exits the system via an ice-delivery hose routed properly to a storage box
up to 35 feet (10.6m) away. See Figure 4 on page 6.
The unit is pre-charged with refrigerant from the factory. The unit has plug-and-play electrical connections for the ice-level
sensor and the optional remote display.
CONTROL BOX
The ice-making unit has an electrical control box with digital display that can be mounted on the unit or remotely mounted up to
7’ (2.1m) away.
The control box (Figure 11, page 12) contains the system function switches, digital display, and system indicator lights. It lets
you control all system operations and provides visual indications of system activity, such as whether the system is running or
has a fault. If a fault condition is detected, the system shuts down automatically. The control panel lets you restart the system
after a sustained fault. See the “The Digital Control” on page 12 for further operating instructions.
ICE-STORAGE BOX
The ice-storage box is the destination point where the ice will accummulate via the ice-delivery hose. An ice-level sensor
installed in the storage box halts ice production when the box is full.
The ice-storage box should be able to hold water and have at least 2" (51mm) of insulation to keep the ice frozen as long as
possible. It is helpful to install a drain in the box at the end opposite from the ice input. To improve ice-production performance,
keep the drain plugged to prevent cold air and cold water from escaping the storage box.
SEAWATER SYSTEM
Seawater is pumped into the ice-making unit to efficiently cool the hot refrigerant via a cupronickel coaxial tube design. The
condensing unit may be connected to its own single-station pump or to a larger, multi-station pump via a pump relay box.
The seawater system (Figure 7, page 9) consists of a thru-hull fitting, seacock, strainer, seawater pump, seawater hose, and
overboard discharge. There must be water flow of at least 2 GPM / 7.6 LPM(maximum 3.5 GPM / 13.2 LPM) or coil erosion can
occur.
FRESHWATER SUPPLY
Use the 1/4" SAE male flare fitting on the auger unit to supply freshwater for ice making. Provide water with pressure of at least
15 PSI. An in-line water filter (included in kit) is mandatory to comply with Dometic Warranty Regulations, to help prevent
clogging of the needle valve in the water reservoir, and to help keep the auger walls from fouling with mineral deposits which will
cause premature failure of water seals and bearings. See “Fresh Water Filter and Y Strainer” on page 19 for maintenance
instructions.
REFRIGERANT CHARGE
The unit is pre-charged with the correct amount of R-404A refrigerant. If service is required, see data plate for correct charge
amount.
THERMAL EXPANSION VALVE (TXV)
The TXV is used as the expansion valve of the refrigerant system. It allows high-pressure liquid to become low-pressure liquid
and start the refrigeration process. The simple and reliable TXV provides a load-modulated system pressure over a wide range
of ambient and seawater temperatures. The TXV is not adjustable.
Vista de pagina 5
1 2 3 4 5 6 7 8 9 10 11 ... 31 32

Comentarios a estos manuales

Sin comentarios